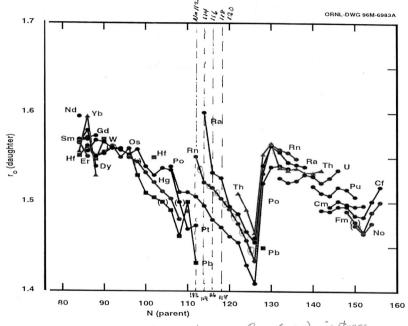

Obtaining r₀ parameters for HF calculations of alpha's from odd-A and odd-odd nuclei Yurdanur Akovali Oak Ridge National Laboratory

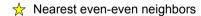
In order to calculate hindrance factors for alpha's from an odd-A and from an odd-odd nucleus, the alpha-hindrance factors program requires a r_0 parameter as an input. These parameters are chosen from the r_0 values calculated for the even-even nuclei (see Y.A.Akovali, Nucl.Data Sheets 84,1 (1998)).



r. parameters calculated from a decays of even-even

(1) For an even Z, odd N nucleus, the r_0 parameters may be chosen as the average of the neighboring N-1 and N+1 isotopes:

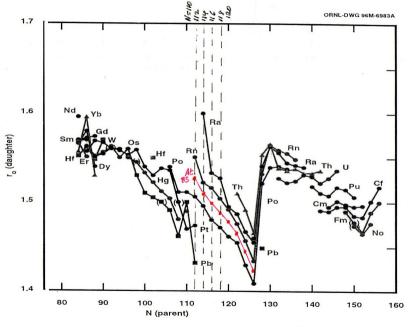
=
$$\frac{1}{2}$$
 [r₀(Z,N-1) + r₀(Z,N+1)]


example:

o to parameters for odd-mass Rm (2:86) isotopes

Even Z, Odd N: e.g., 183Pt

182 Pt 104	183 Pt 105	184 Pt 106	185 Pt 107	185 Pt 108
Z-=78	Z=78		Z=78	Z=78
¹⁸² Au ¹⁰³	¹⁸³ Au ¹⁰⁴	¹⁸⁴ Au ¹⁰⁵	¹⁸⁵ Au ¹⁰⁶	¹⁸⁶ Au ¹⁰⁷
Z=79	Z=79	Z=79	Z=79	Z=79
¹⁸² Hg ¹⁰²	¹⁸³ Hg ¹⁰³	¹⁸⁴ Hg ¹⁰⁴	¹⁸⁵ Hg ¹⁰⁵	¹⁸⁶ Hg ¹⁰⁶
z=80	z=80	z=80	z=80	z=80



Constant Z; interpolate N $1/2[r0(Z,N-1)+r0(Z,N+1)]-TOI\left(\ {} \right) \ and \ ORNL\left(\spadesuit \right)$

(2) For odd Z nuclei, the r0 plots are chosen to be in between the r_0 curves for the neighboring even-even nuclei. The r_0 's for odd Z, even N then is the average of r_0 's for Z+1 and Z-1 isotones:

$$r_0$$
(odd Z,even N)

=
$$\frac{1}{2}$$
 [r₀(Z+1,N) + r₀(Z-1,N)]

· r. parameters for odd Z, even N At isotopes

Odd Z, Even N: e.g., 183Au

182 Pt 104	183 Pt 105	184 Pţ 106	185 Pt 107	185 P †108
Z=78	Z=78	Z=78	Z=78	Z=78
¹⁸² Au ¹⁰³		¹⁸⁴ Au ¹⁰⁵	¹⁸⁵ Au ¹⁰⁶	¹⁸⁶ Au ¹⁰⁷
Z=79		Z=79	Z=79	Z=79
¹⁸² Hg ¹⁰²	¹⁸³ Hg ¹⁰³	¹⁸⁴ Hg ¹⁰⁴	¹⁸⁵ Hg ¹⁰⁵	¹⁸⁶ Hg ¹⁰⁶
Z=80	z=80	^{Z=80} ★	Z=80	z=80

Nearest even-even neighbors if A constant for each column

```
◆ ORNL: Constant N, interpolate Z:

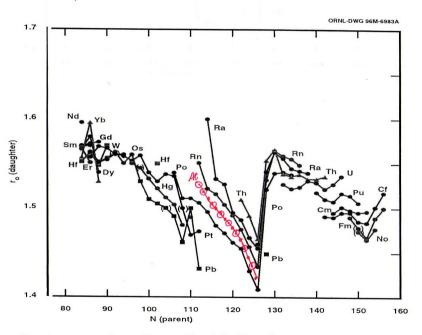
1/2[r0(Z-1,N)+r0(Z+1,N)]

★ TOI: use 4 nearest neighbors (interpolate Z and N):

1/4[r0(Z-1,N)+r0(Z-1,N+2)+r0(Z+1,N-2)+r0(Z+1,N)]

=1/2[r0(Z-1,N+1)+r0(Z+1,N-1)]
```

(3) For odd Z-odd N nuclei, the r_o curves for the odd Z nuclei described in above are used. As it is done for even-even nuclei, r₀'s for the odd N nuclei are the average of ro's for the adjacent even N nuclei with the same Z number:


$$= \frac{1}{2} [r_0(Z,N+1) + r_0(Z,N-1)]$$
This is equivalent to averaging four r_0 's of adjacent

 r_0 (odd Z, odd N)

even-even nuclei. r_0 (odd Z, odd N)

=
$$1/4 \{r_0(Z+1,N+1) + r_0(Z+1,N-1) + r_0(Z-1,N+1) + r_0(Z-1,N-1)\}$$

example:

1. parameters for odd-odd At isotopes

Odd Z, Odd N: e.g., 184Au

182 Pt 104	183 Pt 105	184 Pt 106 Z=78 ★	185 Pt 107	185 Pt 108
Z=78	Z=78		Z=78	Z=78
¹⁸² Au ¹⁰³	¹⁸³ Au ¹⁰⁴		¹⁸⁵ Au ¹⁰⁶	¹⁸⁶ Au ¹⁰⁷
Z=79	Z=79		Z=79	Z=79
¹⁸² Hg ¹⁰² z=80	¹⁸³ Hg ¹⁰³ z=80	¹⁸⁴ Hg ¹⁰⁴ Z=80 ★	¹⁸⁵ Hg ¹⁰⁵ Z=80	¹⁸⁶ Hg ¹⁰⁶ Z=80

Nearest even-even neighbors if A constant for each column

```
◆ ORNL: Interpolate N, interpolate Z:

1/2[r0(Z,N+1)+r0(Z,N-1)]

=1/4[r0(Z-1,N+1)+r0(Z-1,N-1)+r0(Z+1,N+1)+r0(Z+1,N-1)]

★ TOI: Interpolate N, interpolate Z (use 2 nearest neighbors):

1/2[r0(Z-1,N+1)+r0(Z+1,N-1)]
```

The evaluators must use their judgments, and may exclude any of the r0's for the adjacent even-even nuclei in these averaging, depending on their

accuracies, preciseness, and

fit to systematic trend.